Left side

TEST

Right side

Тор

Bottom

the lectures pdfs are available at:

https://www.physics.umd.edu/rgroups/amo/orozco/results/2022/Results22.htm

Correlations in Optics and Quantum Optics; A series of lectures about correlations and coherence. November 2022 Luis A. Orozco www.jqi.umd.edu **BOS.QT**

Lesson 6

Tentative list of topics to cover:

- From statistics and linear algebra to power spectral densities
- Historical perspectives and examples in many areas of physics
- Correlation functions in classical optics (field-field; intensityintensity; field-intensity) part iii
- Optical Cavity QED
- Correlation functions in quantum examples
- Correlations of the field and intensity
- Correlations and conditional dynamics for control
- From Cavity QED to waveguide QED.

Cavity QED in the optical regime

Quantum electrodynamics for pedestrians. There is no need to renormalize. There is only one mode of the electromagnetic field.

ATOM(S) + CAVITY

Perturbative regime: coupling < dissipation.

- Decay rate increase or decrease (cavity less than $\lambda/2$), changes in energy levels.
- Non-perturbative regime: coupling > dissipation. Splitting of the levels by the coupling (Vacuum Rabi).

Beer-Lambert law for intensity attenuation

$$\frac{dI}{dz} = -\alpha I \quad \text{if } \alpha \text{ is resonant and independent}$$

of *I*, α_0 (does not saturate)

$$I = I_0 \exp(-\alpha_0 l)$$

where $\alpha_0 = \sigma_0 \rho$

and $\rho = N/V$ the density of absorbers in a length *l*

Rate of decay (Fermi's golden rule)

Rate of decay free space (Fermi's golden rule)

 $\gamma_0 = \frac{\omega_0^3 d^2}{\pi \varepsilon_0 \hbar c^3}$

Where *d* is the dipole moment

Saturation intensity: One photon every two lifetimes over the cross section of the atom (resonant)

If $I=I_0$ the rate of stimulated emission is equal to the rate of spontaneous emission (Rabi Frequency Ω) and the population on the excited state 1/4.

$$\Omega = \frac{\vec{d} \cdot \vec{E}}{\hbar} = \gamma \sqrt{\frac{I}{I_s}}$$

Excited Population = $\frac{1}{2} \frac{\frac{I}{I_s}}{1 + \frac{I}{I_s}}$

Energy due to the interaction between a dipole and an electric field. $H = \vec{d} \cdot \vec{E}$

The dipole matrix element between two states is fixed by the properties of the states (radial part) and the Clebsh-Gordan coefficients from the angular part of the integral. It is a few times a_0 (Bohr radius) times the electron charge e between the S ground and P first excited state in alkali atoms.

$$\vec{d} = e \left< 5S_{1/2} \left| \vec{r} \right| 5P_{3/2} \right>$$

The dipole coupling between the atom and the cavity:

$$g = \frac{d \cdot E_v}{\hbar}$$

The field of a photon in a cavity with volume V_{eff} is:

$$E_{v} = \sqrt{\frac{\hbar\omega}{2\varepsilon_{0}V_{eff}}}$$

Density matrix

em drive

$$\dot{\rho} = \mathscr{E}[\hat{a}^{\dagger} - \hat{a}, \rho] + \mathscr{E}[\hat{a}^{\dagger}\hat{J}_{-} - \hat{a}\hat{J}_{+}, \rho]$$

$$+ \kappa(2\hat{a}\rho\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a}\rho - \rho\hat{a}^{\dagger}\ddot{a}) \quad \text{Cavity decay}$$

$$+ \left(\gamma/2\right) \sum_{j=1}^{N} \left(2\hat{\sigma}_{-}^{j}\rho\hat{\sigma}_{+}^{j} - \hat{\sigma}_{+}^{j}\hat{\sigma}_{-}^{j}\rho - \rho\hat{\sigma}_{+}^{j}\hat{\sigma}_{-}^{j}\right),$$
Atomic decay

Decorrelated equations:

Radiation field:

$$\frac{\partial}{\partial t}\langle \hat{a}\rangle = -\kappa(1+i\theta)\langle \hat{a}\rangle + \sum_{j=1}^{N} g_j \langle \hat{\sigma}_j^- \rangle + \mathcal{E},$$

Atomic polarization:

$$\frac{\partial}{\partial t} \langle \hat{\sigma}_j^- \rangle = -\gamma_\perp (1 + i\Delta) \langle \hat{\sigma}_j^- \rangle + g_j \langle \hat{a} \rangle \langle \hat{\sigma}_j^z \rangle,$$

Atomic inversion:

$$\frac{\partial}{\partial t} \langle \hat{\sigma}_j^z \rangle = -\gamma_{\parallel} \left(\langle \hat{\sigma}_j^z \rangle + 1 \right) - 2g_j \left(\langle \hat{a} \rangle \langle \hat{\sigma}_j^+ \rangle + \langle \hat{a}^\dagger \rangle \langle \hat{\sigma}_j^- \rangle \right).$$

The cavity and atomic detunings θ and Δ are defined as

$$\theta = \frac{\omega_c - \omega_l}{\kappa}$$
 and $\Delta = \frac{\omega_a - \omega_l}{\gamma_\perp}$.

A first introduction to the Cooperativity

- Atomic decay rate γ
- Cavity decay rate κ
- Atom-cavity coupling rate g

$$C_1 = \frac{g^2}{\kappa\gamma} \quad C = NC_1$$

Coupling Enhancement

 $\alpha = \frac{\gamma_{1D}}{\gamma_0}$ γ_0

Coupling Efficiency

$$\gamma_0 \quad \beta = \frac{\gamma_{1D}}{\gamma_{Tot}} \quad ; \quad \gamma_{Tot} = \gamma_{1D} + \gamma_{rad}$$

Purcell Factor

$$\gamma_{0} \qquad F_{P} = \frac{\gamma_{tot}}{\gamma_{0}} = \frac{\alpha}{\beta}$$
$$\gamma_{Tot} = \gamma_{1D} + \gamma_{rad}$$

Cooperativity

 $\gamma_0 \qquad C_1 = \frac{\beta}{(1-\beta)} = \frac{\gamma_{1D}}{\gamma_{rad}}$

Cooperativity

 $C_1 = \frac{1}{\kappa \gamma_0}$ γ_0

Cooperativity

Dimensionless input and output field normalized to the saturation intensity I_s and the transmission coefficient T of the output mirror

$$y = \frac{E_I}{\sqrt{I_s}}$$
; and $x = \frac{E_T}{\sqrt{TI_s}}$:

Low intensity x<<1: with noinversion, resonant Δ =0 and Θ =0 weakly driven.

Two coupled oscillators

$$\dot{x} = \kappa(-x + 2Cp + y)$$
Two

$$\dot{p} = \gamma(-p - x)$$
Steady state

$$y = x - 2Cp$$

$$p = -x$$

$$y = x(1 + 2C)$$

$$\kappa >> \gamma \quad \dot{p} = -\gamma(1 + 2C)p - \gamma y$$
Enhanced

$$\gamma >> \kappa \quad \dot{x} = -\kappa(1 + 2C)x + \kappa y$$
emission

Steady state with detuning and at all intensities:

$$y = x\left(1 + \frac{2C}{1 + \Delta^2 + |x|^2}\right) + ix\left(\theta - \frac{2C\Delta}{1 + \Delta^2 + |x|^2}\right)$$

Dispersive limit when Θ =0 and Δ >> 1 :

$$y = -ix\frac{2C\Delta}{1+\Delta^2+\left|x\right|^2}$$

Two coupled oscillators

$$\frac{x}{y} = \frac{A}{i\Omega - \Omega_1} + \frac{B}{i\Omega - \Omega_2} , \qquad A = \kappa \frac{\gamma_{\perp} + \Omega_1}{\Omega_1 - \Omega_2} , \\ B = \kappa \frac{\gamma_{\perp} + \Omega_2}{\Omega_2 - \Omega_1} ,$$

$$\Omega_{1,2} = -\frac{\kappa + \gamma_{\perp}}{2} \pm i \sqrt{-\left(\frac{\kappa - \gamma_{\perp}}{2}\right)^2 + \frac{\Omega_{V.R.}^2}{1 + \gamma_{\perp}^2 |x|^2 / (\gamma_{\perp}^2 + \Omega^2)}}$$

.

Cavity mode and atomic polarization

Study the system dynamics by providing a step function.

Decay of the empty cavity

Response to step down excitation

Response to step up excitation

Hamiltonian for *N* atoms

$$\hat{H} = \hat{H}_1 + \hat{H}_1 + \hat{H}_2 + \hat{H}_3 + \hat{H}_4 + \hat{H}_5 ,$$

$$\begin{split} \hat{H}_1 &= \hbar \omega_c \hat{a}^{\dagger} \hat{a} + \frac{1}{2} \hbar \omega_a \sum_{j=1}^N \hat{\sigma}_j^z , & \text{Free atoms} \\ \text{free field} \\ \text{J.C} \quad \hat{H}_2 &= i \hbar \sum_{j=1}^N g_j \left(\hat{a}^{\dagger} \hat{\sigma}_j^- e^{-i \vec{k} \cdot \vec{r}_j} - \hat{a} \hat{\sigma}_j^+ e^{i \vec{k} \cdot \vec{r}_j} \right) \text{ Interaction} \\ \hat{H}_3 &= \sum_{j=1}^N \left(\hat{\Gamma}_A \hat{\sigma}_j^+ + \hat{\Gamma}_A^{\dagger} \hat{\sigma}_j^- \right) , & \text{Atomic decay} \\ \hat{H}_4 &= \hat{\Gamma}_F \hat{a}^{\dagger} + \hat{\Gamma}_F^{\dagger} \hat{a} , & \text{Cavity decay} \\ \hat{H}_5 &= i \hbar \left(\hat{a}^{\dagger} \mathcal{E} e^{-i \omega_l t} - \hat{a} \mathcal{E}^* e^{i \omega_l t} \right) . & \text{Drive} \end{split}$$

Steady State

Jaynes Cummings Dynamics Rabi Oscillations

Exchange of excitation for *N* atoms:

Transmission doublet different from the Fabry Perot resonance

Conditional evolution of the state

Number of Excitations, n

Nonlinear response of the vacuum Rabi resonance

Lev S. Bishop¹, J. M. Chow¹, Jens Koch¹, A. A. Houck¹, M. H. Devoret¹, E. Thuneberg², S. M. Girvin¹ and R. J. Schoelkopf¹*

Thanks